85 research outputs found

    Intrinsic Mitochondrial Membrane Potential and Associated Tumor Phenotype Are Independent of MUC1 Over-Expression

    Get PDF
    We have established previously that minor subpopulations of cells with stable differences in their intrinsic mitochondrial membrane potential (Δψm) exist within populations of mammary and colonic carcinoma cells and that these differences in Δψm are linked to tumorigenic phenotypes consistent with increased probability of participating in tumor progression. However, the mechanism(s) involved in generating and maintaining stable differences in intrinsic Δψm and how they are linked to phenotype are unclear. Because the mucin 1 (MUC1) oncoprotein is over-expressed in many cancers, with the cytoplasmic C-terminal fragment (MUC1 C-ter) and its integration into the outer mitochondrial membrane linked to tumorigenic phenotypes similar to those of cells with elevated intrinsic Δψm, we investigated whether endogenous differences in MUC1 levels were linked to stable differences in intrinsic Δψm and/or to the tumor phenotypes associated with the intrinsic Δψm. We report that levels of MUC1 are significantly higher in subpopulations of cells with elevated intrinsic Δψm derived from both mammary and colonic carcinoma cell lines. However, using siRNA we found that down-regulation of MUC1 failed to significantly affect either the intrinsic Δψm or the tumor phenotypes associated with increased intrinsic Δψm. Moreover, whereas pharmacologically mediated disruption of the Δψm was accompanied by attenuation of tumor phenotype, it had no impact on MUC1 levels. Therefore, while MUC1 over-expression is associated with subpopulations of cells with elevated intrinsic Δψm, it is not directly linked to the generation or maintenance of stable alterations in intrinsic Δψm, or to intrinsic Δψm associated tumor phenotypes. Since the Δψm is the focus of chemotherapeutic strategies, these data have important clinical implications in regard to effectively targeting those cells within a tumor cell population that exhibit stable elevations in intrinsic Δψm and are most likely to contribute to tumor progression

    The interactions of Cobalt(II) with mitochondria from rat liver

    Get PDF
    The interactions of Co2+ with mitochondria have been investigated. The results indicate that Co2+ inhibits ATP synthesis. Further investigations into ATP synthesis mechanisms indicated that inhibition is due to the opening of a transmembrane pore. The opening of this pore causes the collapse of the high-energy intermediate where, under a pH and a potential gradient, the energy is stored and subsequently utilized to form ATP from ADP

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Regulation of Ca2+ Efflux in Rat Liver Mitochondria: Role of Membrane Potential

    No full text
    The paper analyzes the relationship between membrane potential (delta psi), steady state pCao (-log [Ca2+] in the outer aqueous phase) and rate of ruthenium-red-induced Ca2+ efflux in liver mitochondria. Energized liver mitochondria maintain a pCao of about 6.0 in the presence of 1.5 mM Mg2+ and 0.5 mM Pi. A slight depression of delta psi results in net Ca2+ uptake leading to an increased steady state pCao. On the other hand, a more marked depression of delta psi results in net Ca2+ efflux, leading to a decreased steady-state pCao. These results reflect a biphasic relationship between delta psi and pCao, in that pCao increases with the increase of delta psi up to a value of about 130 mV, whereas a further increase of delta psi above 130 mV results in a decrease of pCao. The phenomenon of Ca2+ uptake following a depression of delta psi is independent of the tool used to affect delta psi whether by inward K+ current via valinomycin, or by inward H+ current through protonophores or through F1-ATP synthase, or by restriction of e- flow. The pathway for Ca2+ efflux is considerably activated by stretching of the inner membrane in hypotonic media. This activation is accompanied by a decreased pCao at steady state and by an increased rate of ruthenium-red-induced Ca2+ efflux. By restricting the rate of e- flow in hypotonically treated mitochondria, a marked dependence of the rate of ruthenium-red-induced Ca2+ efflux on the value of delta psi is observed, in that the rate of Ca2+ efflux increases with the value of delta psi. The pCao is linearly related to the rate of Ca2+ efflux. Activation of oxidative phosphorylation via addition of hexokinase + glucose to ATP-supplemented mitochondria, is followed by a phase of Ca2+ uptake, which is reversed by atractyloside. These findings support the view that Ca2+ efflux in steady state mitochondria occurs through an independent, delta psi-controlled pathway and that changes of delta psi during oxidative phosphorylation can effectively modulate mitochondrial Ca2+ distribution by inhibiting or activating the delta psi-controlled Ca2+ efflux pathway

    Electroneutral H+/K+ Exchange in Liver Mitochondria: Regulation by Membrane Potential

    No full text
    The paper analyzes the factors affecting the H+-K+ exchange catalyzed by rat liver mitochondria depleted of endogenous Mg2+ by treatment with the ionophore A23187. The exchange has been monitored as the rate of K+ efflux following addition of A23187 in low-K+ media. (1) The H+-K+ exchange is abolished by uncouplers and respiratory inhibitors. The inhibition is not related to the depression of delta pH, whereas a dependence is found on the magnitude of the transmembrane electrical potential, delta psi. Maximal rate of K+ efflux is observed at 180-190 mV, whereas K+ efflux is inhibited below 140-150 mV. (2) Activation of H+-K+ exchange leads to depression of delta pH but not of delta psi. Respiration is only slightly stimulated by the onset of H+-K+ exchange in the absence of valinomycin. These findings indicate that the exchange is electroneutral, and that the delta psi control presumably involves conformational changes of the carrier. (3) Incubation in hypotonic media at pH 7.4 or in isotonic media at alkaline pH results in a marked activation of the rate of H+-K+ exchange, while leaving unaffected the level of Mg2+ depletion. This type of activation results in partial 'uncoupling' from the delta psi control, suggesting that membrane stretching and alkaline pH induce conformational changes on the exchange carrier equivalent to those induced by high delta psi. (4) The available evidence suggests that the activity of the H+-K+ exchanger is modulated by the electrical field across the inner mitochondrial membrane

    DeltapH-induced Ca2+ Fluxes in Rat Liver Mitochondria

    No full text
    1. The paper reports an investigation on \u394pH-driven Ca2+ fluxes in rotenone-treated rat liver mitochondria. The H+ concentration gradient (acidic inside) required to drive Ca2+ influx is obtained from the K+ concentration gradient through a H+/K+ exchange. The rate of H+/K+ exchange is very low in native mitochondria and is markedly enhanced by the electroneutral ionophore nigericin. The rate of Ca2+ influx depends on the rate of generation of \u394pH; it is negligible in native mitochondria and fast after nigericin. 2. The process of \u394pH-driven Ca2+ influx shows three basic features. First, the rate of Ca2+ influx is markedly increased by the addition of uncouplers. Second, the rate of Ca2+ influx is inhibited by ruthenium red with the same sensitivity as the processes driven by the H+ pump or K+ diffusion. The electroneutral H+/Ca2+ ionophore A23187 restores Ca2+ influx in mitochondria inhibited by ruthenium red. Third, both rate and extent of \u394pH-driven Ca2+ influx are inhibited by the addition of weak bases but not of weak acids. 3. The process of \u394pH-driven Ca2+ influx is accompanied by H+ efflux. A correlation also exists between generation of \u394pH (acidic inside) due to H+/K+ exchange and utilization of \u394pH due to H+/Ca2+ exchange. The process of \u394pH-driven, A23187-catalyzed, H+/Ca2+ exchange is not preceeded by rapid H+/K+ exchange in the absence of nigericin. 4. After termination of the phase of Ca2+ influx a phase of Ca2+ efflux ensues. Ca2+ efflux is not coupled to H+ or K+ reentry and is completely inhibited by ruthenium red. Ca2+ efflux is not observed when Ca2+ transport is catalyzed by A23187 in mitochondria inhibited by ruthenium red. Furthermore A23187 abolishes Ca2+ efflux also when Ca2+ influx occurs in the absence of ruthenium red. 5. The data suggest that the \u394pH-driven Ca2+ influx and the subsequent Ca2+ efflux take place through the native carrier as electrical uniport
    • …
    corecore